Approximation of the Hilbert Transform on the real line using Hermite zeros

نویسندگان

  • Maria Carmela De Bonis
  • Biancamaria Della Vecchia
  • Giuseppe Mastroianni
چکیده

The authors study the Hilbert Transform on the real line. They introduce some polynomial approximations and some algorithms for its numerical evaluation. Error estimates in uniform norm are given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zeros of exceptional Hermite polynomials

Exceptional orthogonal polynomials were introduced by Gomez-Ullate, Kamran and Milson as polynomial eigenfunctions of second order differential equations with the remarkable property that some degrees are missing, i.e., there is not a polynomial for every degree. However, they do constitute a complete orthogonal system with respect to a weight function that is typically a rational modification ...

متن کامل

The bilinear Hilbert transform acting on Hermite and Laguerre functions

We obtain several formulas for the action of the bilinear Hilbert transform on pairs of Hermite and Laguerre functions. The result can be expressed as a linear combination of products of Hermite or Laguerre functions.

متن کامل

Convergence of Hermite and Hermite-Fejér Interpolation of Higher Order for Freud Weights

We investigate weighted Lp(0 < p <.) convergence of Hermite and Hermite– Fejér interpolation polynomials of higher order at the zeros of Freud orthogonal polynomials on the real line. Our results cover as special cases Lagrange, Hermite– Fejér and Krylov–Stayermann interpolation polynomials. © 2001 Academic Press

متن کامل

Approximation of a weighted Hilbert transform by using perturbed Laguerre zeros

In the present paper is proposed a numerical method to approximate Hilbert transforms of the type

متن کامل

A Hilbert transform representation of the error in Lagrange interpolation

Let Ln [f ] denote the Lagrange interpolation polynomial to a function f at the zeros of a polynomial Pn with distinct real zeros. We show that f − Ln [f ] = −PnHe [ H [f ] Pn ] , where H denotes the Hilbert transform, and He is an extension of it. We use this to prove convergence of Lagrange interpolation for certain functions analytic in (−1, 1) that are not assumed analytic in any ellipse wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 71  شماره 

صفحات  -

تاریخ انتشار 2002